Cardiovascular Data Standards

James E. Tcheng, MD, FACC, FSCAI
Professor of Medicine (Cardiology)
Professor of Informatics
Duke University, Durham, NC
james.tcheng@duke.edu

I have no conflicts of interest or other relationships to disclose relevant to this presentation.
Healthcare Data Ecosystem

Clinical Vocabularies

Terminology (CDE) Standards, Data Models (CDM), Model Library (e.g. Graphite, NLM)

Model Translation Process

HL7 FHIR Resources, FHIR Profile Library

Enterprise Systems

- Interoperability Platform
 - Terminology Standards (Vocabulary) Service
 - Data Management (Data Model) Service

Apps Platform

- Internal Applications, Purchased Applications, Registries

Shared data, trusted environment

EHR
HIT
Registry vendor

Societies
Consortia
Registries

open source

proprietary

 Courtesy of Stan Huff, MD
It Starts with Good Data

Clinical data
- (standardized data elements and definitions)

Other data
- (administrative, EHR, etc)

Database

Evidence Generation

Quality Improvement

Technology Assessment

Meaningful role in clinical practice

How Registries Solve the Data Capture Problem

Standardized NCDR data elements and processes

- Patient demographics for diagnostic coronary angiography and percutaneous coronary intervention (PCI) procedures
- Patient history/risk factors, cath lab visit indications and coronary lesion information
- Provider and facility characteristics
- PCI Indications, lesion information, intracoronary device utilization and intra/post-procedure events
- 30-day and 1-year follow-up information on patients who had PCI

The registry supports a variety of data entry and submission options including certified third-party vendors and secure web-based entry. Data collection options

The FHIR Specification Provides:

- Healthcare domain resources (content framework)
- Infrastructure for exchanging resources (RESTful API)
- Descriptive and ontological narrative describing relationships
- Framework for determining conformance (testing and safety)
- Resources for management workflows

- References between resources build up the record
Search Term: myocardial infarction
Returns 308 matches in 2.33 seconds
Terms defined by pathologic, anatomic relationships
No clinical definition

SNOMED-CT
End to End Native Data Interoperability?

- Identify, define core clinical concepts
- Capture core clinical concepts as data (not text)
- Specify representation of data as data elements in database systems (physical data model)
- Integrate data capture with clinical workflow
- Target direct data transfer (while respecting ETL / boundary-based interoperability)
- Capture once, use many times ...
Cardiovascular data eXchange
Why CardX?

Cardiovascular medicine is rich in consensus, evidence-based guidelines and practice models proven to reduce cardiovascular morbidity and mortality.

DATA STANDARDS

ACCF/AHA 2011 Key Data Elements and Definitions of a Base Cardiovascular Vocabulary for Electronic Health Records

A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Clinical Data Standards

J Am Coll Cardiol. 2011; 58:202-22
Circulation. 2011; 124:103-23

Clinical Practice Guideline

A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines

J Am Coll Cardiol. 2018; 71:e127-e248
Circulation. 2018; 138:e484-e594
Evidence-Based Medicine

- What is mature?
 - Epidemiology, science – we understand the problems & have solutions
 - Pharmacology, devices – we have therapeutics that improve outcomes
 - Guidelines, policies – we have agreement about what needs to be done

- What is incomplete (or missing)?
 - Guidelines written per computational constructs
 - **Device standards**: that enables “plug and play” (e.g., home BP devices)
 - **Data standards**: clinical concepts expressed as (universal) data elements
 - Patient-facing IT: high usability systems that enable patients (e.g., medication reconciliation, guided BP management)
Potential CardX Use Cases

Foundation: core, interoperable cardiovascular lexicon

- Home-based management of hypertension
- Quality and performance measures assessment
- Registry submission
- Medical device assessment and surveillance
- Clinical decision support
- Research and discovery
- ...
CardX – Cardiovascular Data eXchange

A set of common data elements for cardiovascular care that is standardized, computable, clinically applicable and available in every electronic health record for patients with a cardiovascular diagnosis

A standard health record for cardiology
Builds on the methods and technologies of mCODE

An expert validated set of data elements applicable to all cardiovascular conditions, and collected for:

Standardized information exchange
Use-case driven and targeted use

Cardiology data element domains: patient, disease, treatment, outcomes, device, lab/vital

mCODE STU2: http://hl7.org/fhir/us/mcode/
Hypertension Use Case

Problem
• Hypertension affects 115 million adults in America
• Lack of adherence to clinical guidelines to diagnose, treat, and manage hypertension
• Home BP monitoring is the standard for hypertension management, however there are no data exchange standards

Solution
• Integrated standard that enables interoperable, scalable, and accessible HTN management both at home and clinic

Desired Impact
• Provide patients, physicians, APPs, nurses, medical assistants, pharmacists, and dieticians with the tools needed to adhere to hypertension guidelines
• Increase data liquidity between blood pressure measurements captured at home with those captured in the clinic
Hypertension Use Case

Clinic
- Clinician
- Decision Support
- EHR
- Quality Measures
- Payers

Home
- Patient
- Patient Guidance Engine
- Personal Health Record
- Personal Health Devices
- Device Gateway

CardX
Clinician Encounter (Outpatient) (e.g., cardiology, internal medicine, family medicine)

EHR
- Demographics
- Vitals
- Diagnoses
- Prescriptions
- Labs
- Social history
- Care plan

ASCVD Risk Calculator
American College of Cardiology

Clinical Decision Support, Guidelines
- HTN management
- Performance measures
- Clinical documentation

Home Monitoring (asynchronous, semi-autonomous)

PHR
- BP / Health Management Portfolio

@Home BP Measurement

RESTful API

Patient

FHIR BP1 (EHR to PHR: both push to and call from PHR)
- Demographics: patient ID, DOB, MRN, sex, race, ethnicity
- Vitals: SBP, DBP, HR, height, anatomic location, measurement location
- Diagnoses: HTN, DM, CKD, kidney transplant, pregnancy, comorbidities ...
- Assessment: EtOH, diet, nicotine, activity, stress
- Labs: cholesterol, HDL
- Meds: ASA, statin, HTN rx, HTN aggravating rx, RxClass (as prescribed)
- Non-pharm rx: diet, tobacco, exercise, stress reduction
- Care plan: HTN target, care plan components, education

FHIR Personal Medical Device
- Patient ID
- Device ID
- Vitals: SBP, DBP, HR, anatomic location
- Measurement location (home)
- Date and timestamp

FHIR BP2 (episodic PHR to EHR: BP data, clinician messaging)
- Demographics: patient ID, DOB, MRN
- Vitals: SBP, DBP, average BP, HR, anatomic location, measurement location, weight
- Meds: ASA, statin, HTN rx, HTN aggravating rx, RxClass (as taken)
- Social: diet, tobacco, EtOH, exercise, behavioral
- Patient-reported outcome measures (PROM)

KEY
Purple: not in scope
Orange: our responsibility to define
Dark blue: collaboration with stakeholders at data exchange & implementation levels
Light blue: high level data content
Technical Approach

- Map and disambiguate Guidelines and Performance Measures (ACC/AHA, AAFP, NQF, etc.) into core concepts and corresponding data elements
- Identify sources of data in context of processes and workflows
- Specify, build FHIR profiles and implementation guides
 - From device or device gateway, self-monitored BP data will be exchanged with a Patient Data Manager (PHR)
 - Separate FHIR-based exchanges will connect the Patient Data Manager / PHR with the EHR
Stakeholder Opportunities and Contributions
Linking Clinicians, Patients, Health Systems, Vendors, and Government

Opportunity
- Lower barriers to evidence-based practice
- Reduce burden of data collection
- Facilitate actionable data to inform treatment

Contribution
- Enable data liquidity through FHIR
- Support development of next generation care models for patients with HTN
- Focus on the user experience

Opportunity
- Reduce death and disability due to HTN
- Decrease healthcare costs
- Increase scalability, efficiency, and effectiveness of HTN management

Contribution
- Demonstrate proof of use of FHIR-based interoperability
- Validate value of FHIR Accelerator model in improving HTN management
Thank You!

james.tcheng@duke.edu

Visit the Pew Project website:

https://dcri.org/registry-data-standards